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Abstract: The main purpose of this paper is to study 
energy differentiations of electroencephalogram 
(EEG) and event related potentials (ERP) of normal 
subjects and subjects with dyslexia. As ERP is 
considered to be nonstationary signal, traditional 
spectral analysis is not recommended. A most 
appropriate approach is time-frequency 
representation (TFR) which reveals temporal 
evolution of frequency components. In this study a 
non-orthogonal, iterative method for adaptive time-
frequency approximation of signals called matching 
pursuit is used. This method decomposes the signal 
piece by piece using a dictionary of basis functions. 
At each step the best fitting analyzing function is 
adapted to an intrinsic structure of the signal, thus 
providing flexible signal representation. The major 
advantages of the matching pursuit are the good 
localization of transients, the robust universal 
estimate of the time-frequency energy density which 
is resistant to the existence of noise and the fact that 
the dictionary set of waveforms is not limited to a 
single basis. Time frequency statistics reveal 
statistical differences on energy distribution of 
specific time intervals and frequency components 
over time-frequency plane. Possible non-normal 
distributions of the energy values are taken into 
account and a normalization transform is used in 
order to be able to use robust parametric tests. 
According to this analysis, dyslexics appear to have 
statistically reduced energy compared to controls for 
frequency regions 5-20Hz and for time around the 
ERP component N100. 

 
Introduction 

In the present paper, the matching pursuit algorithm, 
which was first proposed by Mallat and Zhang [1] is 
applied in order to estimate the energy of EEG signals 
in time-frequency plane. The use of matching pursuit 
algorithm leads to a decomposition of each EEG signal 
into a linear expansion of Gabor atoms. The time-
frequency estimation of EEG signal energy is the result 

of pseudo Wigner-Ville distribution of Hilbert transform 
of these Gabor atoms. 

In previous works have been used some other 
methods in estimation of EEG signal energy in time-
frequency plane like spectrogram [2], scalogram [3], 
bandpass filtering in overlapping bands [4].The  
approximation of a signal using nonorthogonal 
functions is a “nonpolynomial” problem (computational 
complexity grows exponentially with the dimension of 
signal). The matching pursuit algorithm is a sub-optimal 
solution but as the heuristic give relatively small error 
this can’t be considered as drawback.  The major 
advantages of matching pursuit in contrary to the other 
time-frequency methods is that provides an optimal 
non-orthogonal selection of basis atoms and full 
parametrization of these atoms. The above features of 
matching pursuit is very important in time-frequency 
analysis of non-stationary signal like EEG/ERP, whose 
temporal changes in energy are significant as they are 
associated with functional brain activation.  

No other methods possess these properties. For 
example, the Fourier analysis which used in 
spectrogram localization in time and frequency depends 
on epoch length (the STFT spectrogram divides the 
analyzed signal into overlapping epochs). Continuous 
wavelet transform or Cohen’s class transforms do not 
provide parametric description. Moreover Cohen’s class 
transforms are biased by cross-terms. Discrete wavelet 
transforms, which used in scalogram give parametric 
descriptions, but their time-frequency resolution is 
severely limited as it has high temporal resolution and 
low frequency resolution at high frequencies, and low 
temporal resolution and high frequency resolution at 
low frequencies [5]. 

According to earlier works the matching pursuit 
algorithm provides a unified parametrization of EEG, 
applicable in a variety of several standard research and 
clinical problems, encountered in analysis of evoked 
potentials [6], automatic detection and analysis of sleep 
spindles in overnight EEG recordings [7], ERD/ERS 
[6][8], pharmaco-EEG [9] and epileptic seizures 
[10][11]. 
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Methods 
Matching Pursuit Algorithm 

As already mentioned, matching pursuit is an 
iterative procedure which provides a mathematical 
description (parametrization) of the signal.  

First of all it needs to be generated a redundant set of 
time-frequency atoms which is called dictionary D. In 
this paper we construct the dictionary D from Gabor 
functions: 
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K(γ) is a coefficient such that ||gγ||=1, γ = {u, f, σ, φ} 
denotes parameters of the dictionary’s functions where 
u is the translation in time, f the frequency, σ the spread 
in time, φ the phase.  

 Except of Gabor dictionaries, a wavepacket 
dictionary which was built with Daubechies 6 
quadrature mirror filter has been also used. The 
functions of latter dictionary are not as well localized in 
time and frequency as Gabor functions and also do not 
include a phase parameter and thus cannot match signal 
components as well as Gabor functions. These 
drawbacks of wavepacket dictionary make Gabor 
dictionary the most appropriate for EEG signal 
decomposition. 

Afterwards we compute a linear expansion of 
original signal s over a redundant set of atoms selected 
from the dictionary, in order to best match its inner 
structures. This is done by successive approximations of 
s with orthogonal projections on elements of the 
dictionary. Let ssR =0 .We suppose that we have 
computed the nth order residue Rns for 0≥n . We 
choose an element Dg

n
∈γ  from the dictionary D 

which best match the signal Rns which is the residual 
left after subtracting the results of previous iterations. 
The residue Rns can be also decomposed into: 
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where argmaxgγi∈D means the gγi giving the largest value 
of the product  <Rns,gγi>. The iterative procedure of 
decomposition stops either when the energy of residual 
signal is below a preset cut-off level ε or, alternative 
after a predetermined number of iterations, m.   

After m iterations, a matching pursuit decomposes a 
signal s into: 
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where Rms is the residual vector after m iterations and 

∫
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= (t)dtgs(t)s,g  denotes inner product of functions s 

and g. 
Because the orthogonality of Rn+1s and to gγn is valid 

in each step of the procedure, the form of energy 
conservation law becomes: 
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When the iterative procedure terminates the 
selection of Gabor atoms from dictionary is completed. 
After that we derive a time–frequency energy 
distribution by adding the pseudo Wigner-Ville 
distribution of the selected atoms that is free of cross 
terms. 

The pseudo Wigner-Ville distribution is a Wigner-
Ville distribution in which the infinite integrals have 
been replaced by finite integrals or, equivalently, a 
windowing function. More analytically, the pseudo 
Wigner-Ville distribution can be expressed as: 
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where with h and k Hanning windows corresponding to 
frequency and time smoothing respectively. 

The representation of signal’s spectral density which 
is constructed using equation (5) satisfies the time and 
frequency marginals. The use of matching pursuit is 
able to remove cross terms which might lead to 
misinterpretation and provides an accurate picture of the 
energy distribution in the time-frequency plane. 

The definition of the time-frequency distribution of 
energy of the signal which described in (6) is: 
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In time-frequency signal analysis has almost 
universally used analytic signal which is a complex 
signal that contains both real and imaginary 
components. The imaginary part is obtained by Hilbert 
transform. The advantage of using the analytic signal is 
that in the frequency domain the amplitude of negative 
frequency components are zero. This satisfies 
mathematical completeness of the problem by 
accounting for all frequencies, yet does not limit the 
practical application since only positive frequency 
components have a practical interpretation. Moreover, 
in the Wigner distribution of discrete signal even when 
the sampling of the signal satisfies the Nyquist criterion, 
there are still aliasing components. A simple approach 
to avoid aliasing, as J. Ville proposed, is to use an 
analytic signal before computing the distribution. 
[12][13] and for this reason the Hilbert transform of 
selected atoms is calculated. 

Time-frequency resolution of signal’s representation 
depends on the uncertainty principle of Heisenberg [14] 
given by the equation 
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As the time-frequency plane must be calculated with 
a specific resolution, a discretization of time–frequency 
maps into resels (resolution elements) take place.  
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Statistical Tests 
In this section, a statistical framework is described in 

order to quantify statistical diferrentiations in the time-
frequency plane. The null hypothesis is that there is no 
difference of the mean energies of two groups (controls, 
dyslectics) in a given resel. In order to use robust 
parametric statistical tests, possibly non-normal 
distributions of the energy values must be taken into 
account. So where data normality is not satisfied, the 
logarithmic transformation is applied that is found to be 
the best transformation for the absolute power [15]. The 
t-statistic is given by the equation  
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where tr(E) is the transformed energy (where is needed) 
and s(i,j) is the pooled variance of the two groups in the 
investigated resel. If the variances are statistically 
unequal, the degrees of freedom are adjusted according 
to Welch's correction.  

As simultaneous tests for each resel (which is not 
independent to neighbor resels) take place the problem 
of multiple comparisons arises. To deal with this 
problem the false discovery rate (FDR) is applied. The 
FDR is tested for the significance level q=0.05. This 
methodology sorts the significancies pi, i=1,...,r (r: total 
number of resels) of all resels  in an ascending order. 
Then the metric  
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is calculated rejecting all hypotheses for which p≤pk.. 
 

Subjects and Procedures for Signal Acquisition 
Fifty seven (57) children participated in the 

experiment. Thirty eight (26 boys and 12 girls) of them 
were outpatient cases who had been diagnosed as 
suffering from learning disorders (dyslexia) according 
to the 10th edition of the International Classification of 
Diseases (ICD-10) and the rest 19 children (7 boys and 
12 girls) were their healthy siblings. The mean ages for 
the dyslectic children and for the controls were 
11.47±2.12 and 12.21±2.25 years, respectively. 

The children’s EEG signals were recorded at 15 
electrodes (Fp1, F3, C5, C3, Fp2, F4, C6, C4, O1, O2, 
P4, P3, Pz, Cz, Fz) according to the 10–20 international 
system, referred to both earlobes. For more 
experimental details see Papageorgiou et al [16]. Raw 
EEG was sampled for 500msec with sampling 
frequency 1 kHz, thus oversatisfying the Shannon 
theorem. In order to remove the EEG noise, the total 
procedure consisted of 52 repetitions and the finally 
taken signal was the average of these repetitions. 

 
Results 

It has been observed that the N100 peak of dyslexics 
is reduced compared to controls in the majority of 
electrodes. These can be expressed as reduced energy in 

this time period. Characteristic waveforms can be seen 
in figure 1.  
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Figure 1: Mean waveforms of electrode Fz for controls (solid line) and 
dyslexics (dashed line). The time point 0 denotes the onset of the 
warning stimulus and ERP.  

 
We want to represent these energies’ differences and 

their evolution in both time and frequency domain. The 
matching pursuit decomposition algorithm and the 
pseudo Wigner-Ville Distribution were applied to the 
EEG/ERP signals of the participants in the experiment 
in order to extract time-frequency maps. The procedure 
was stopped when the decomposition had subtracted the 
99% of the energy of the signal. The maps were 
discretized into resels of 0.02s x 4Hz in order to comply 
with Heisenberg theorem. When it was needed the 
logarithmic transformation was applied in order to 
achieve data normality.  
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Figure 2: Time-frequency statistics for all 15 electrodes. Red color 
denotes rejection of null hypothesis (p<0.05) 

 
Then, the statistical test described in section 

methods took place to find mean energy statistical 
differences between the two groups (controls, dyslexics) 
in each resel. The results were corrected for multiple 
comparisons with FDR whose significant level was set 
at 0.05. The statistical significances of the tests  for all 
electrodes are shown in figure 2. It can be observed that 
differences lie mainly in the time period 50-200msec 
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after the warning stimulus and contain frequencies 5-
20Hz.  

 
Discussion 

The purpose of this work was the study of mean 
energy statistical differences between controls and 
dyslexics in time-frequency plane. A statistical 
framework was proposed in order to calculate statistical 
time-frequency differences facing the problem of 
multiple comparisons and normality of data.    

It was shown that there are differences between the 
two examined groups mainly around N100 ERP 
component where a preliminary analysis showed that 
dyslexics have reduced mean peaks in absolute value. In 
all others ERP peaks, there were not abserved 
deviations between the two groups. The method appear 
to identify that most  statistical differences lie in this 
time period. Also it appears that differences lie in 
specific frequencies (5-20Hz) which are the dominant 
frequenies in the N100 ERP component. What is 
important to note is that most of electrodes have similar 
behavior within the groups so differences appear in 
specific resels.  

The differences are appeared in frontal and central 
areas of brain (electrodes Fp1, F3, C5, C3, C6, C4, Fz). 
On the other hand, minimal differences are appeared in 
parietal or occipital areas.   

 
Conclusions 

The proposed method can provide a quantitative 
means to assess statistical differences in averagy 
energies between two groups in time-frequency plane. It 
can provide insights to energy variations along time. 
This is of great importance mainly for non stationary 
signals like ERP where traditional spectral analysis (eg 
STFT) may be inaccurate.   
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